Loading...
HF多模态

malteos/scincl

SciNCL SciNCL is a pre-tr...

标签:


SciNCL

SciNCL is a pre-trained BERT language model to generate document-level embeddings of research papers.
It uses the citation graph neighborhood to generate samples for contrastive learning.
Prior to the contrastive training, the model is initialized with weights from scibert-scivocab-uncased.
The underlying citation embeddings are trained on the S2ORC citation graph.

Paper: Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings (EMNLP 2022 paper).

Code: https://github.com/malteos/scincl

PubMedNCL: Working with biomedical papers? Try PubMedNCL.


How to use the pretrained model

from transformers import AutoTokenizer, AutoModel
# load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('malteos/scincl')
model = AutoModel.from_pretrained('malteos/scincl')
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
          {'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
# concatenate title and abstract with [SEP] token
title_abs = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
# preprocess the input
inputs = tokenizer(title_abs, padding=True, truncation=True, return_tensors="pt", max_length=512)
# inference
result = model(**inputs)
# take the first token ([CLS] token) in the batch as the embedding
embeddings = result.last_hidden_state[:, 0, :]


Triplet Mining Parameters

Setting Value
seed 4
triples_per_query 5
easy_positives_count 5
easy_positives_strategy 5
easy_positives_k 20-25
easy_negatives_count 3
easy_negatives_strategy random_without_knn
hard_negatives_count 2
hard_negatives_strategy knn
hard_negatives_k 3998-4000


SciDocs Results

These model weights are the ones that yielded the best results on SciDocs (seed=4).
In the paper we report the SciDocs results as mean over ten seeds.

model mag-f1 mesh-f1 co-view-map co-view-ndcg co-read-map co-read-ndcg cite-map cite-ndcg cocite-map cocite-ndcg recomm-ndcg recomm-P@1 Avg
Doc2Vec 66.2 69.2 67.8 82.9 64.9 81.6 65.3 82.2 67.1 83.4 51.7 16.9 66.6
fasttext-sum 78.1 84.1 76.5 87.9 75.3 87.4 74.6 88.1 77.8 89.6 52.5 18 74.1
SGC 76.8 82.7 77.2 88 75.7 87.5 91.6 96.2 84.1 92.5 52.7 18.2 76.9
SciBERT 79.7 80.7 50.7 73.1 47.7 71.1 48.3 71.7 49.7 72.6 52.1 17.9 59.6
SPECTER 82 86.4 83.6 91.5 84.5 92.4 88.3 94.9 88.1 94.8 53.9 20 80
SciNCL (10 seeds) 81.4 88.7 85.3 92.3 87.5 93.9 93.6 97.3 91.6 96.4 53.9 19.3 81.8
SciNCL (seed=4) 81.2 89.0 85.3 92.2 87.7 94.0 93.6 97.4 91.7 96.5 54.3 19.6 81.9

Additional evaluations are available in the paper.


License

MIT

数据统计

数据评估

malteos/scincl浏览人数已经达到539,如你需要查询该站的相关权重信息,可以点击"5118数据""爱站数据""Chinaz数据"进入;以目前的网站数据参考,建议大家请以爱站数据为准,更多网站价值评估因素如:malteos/scincl的访问速度、搜索引擎收录以及索引量、用户体验等;当然要评估一个站的价值,最主要还是需要根据您自身的需求以及需要,一些确切的数据则需要找malteos/scincl的站长进行洽谈提供。如该站的IP、PV、跳出率等!

关于malteos/scincl特别声明

本站Ai导航提供的malteos/scincl都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Ai导航实际控制,在2023年5月9日 下午7:12收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Ai导航不承担任何责任。

相关导航

暂无评论

暂无评论...