✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
?个人主页:Matlab科研工作室
?个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击?
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
? 内容介绍
climanomaly plots two lines (y vs. x and y vs. ref) and visualisespositive and negative anomalies by shading the area between both lines intwo different colors. This is useful for visualising anomalies of a timeseries relative to a climatology. The function can further be used toplot anomalies relative to a constant baseline or two threshold baselines(positive anomaly above upper threshold, negative anomaly below lowerthreshold).
Syntax
climanomaly(x,y,ref)climanomaly(…,’top’,ColorSpec)climanomaly(…,’bottom’,ColorSpec)climanomaly(…,’mainline’,’LineSpec’)climanomaly(…,’refline’,’LineSpec’) [hlin,href,htop,hbot] = CLIMANOMALY(…)
Description
climanomaly(x,y,ref) plots a y vs. x (main line) and y vs. ref (referenceline) and shades areas line values above zero; blue fills the areabetween zero and any values below zero.
-
To shade anomalies relative to a variable reference (e.g. aclimatology) specify ref as a vector the length of y.
-
To shade anomalies relative to a constant baseline, specify a singleref value.
-
To shade anomalies relative to an upper and a lower threshold, specifytwo ref values (e.g., let ref be [-0.4 0.5] to shade all values lessthan 0.4 or greater than 0.5).
climanomaly(…,’top’,ColorSpec) specifies the top color shading, whichcan be described by RGB values or any of the Matlab short-hand colornames (e.g., ‘r’ or ‘red’).
climanomaly(…,’bottom’,ColorSpec) specifies the bottom shading color.
climanomaly(…,’mainline’,’LineSpec’)climanomaly(…,’refline’,’LineSpec’)Specifies line types, plot symbols and colors of the reference line.LineSpec is a string of characters, e.g. ‘b–*’. Refer to the ‘plot’documentation for more options. By default, the main line will be plottedas a solid black line (‘k-‘) and the reference line as a dotted blackline (‘k:’).
[hlin,href,htop,hbot] = climanomaly(…) returns the graphics handles ofthe main line, top, and bottom plots, respectively.
? 部分代码
clcclear allclose allx = 1:.1:20;y = sin(x);ref = sin(x)/2;figureclimanomaly(x,y,ref);
function [hlin,href,htop,hbot] = climanomaly(x,y,ref,varargin)CLIMANOMALY plots two lines (y vs. x and y vs. ref) and visualisespositive and negative anomalies by shading the area between both lines intwo different colors. This is useful for visualising anomalies of a timeseries relative to a climatology. The function can further be used toplot anomalies relative to a constant baseline or two threshold baselines(positive anomaly above upper threshold, negative anomaly below lowerthreshold).% SyntaxCLIMANOMALY(x,y,ref)CLIMANOMALY(...,'top',ColorSpec)CLIMANOMALY(...,'bottom',ColorSpec)CLIMANOMALY(...,'mainline','LineSpec')CLIMANOMALY(...,'refline','LineSpec')[hlin,href,htop,hbot] = CLIMANOMALY(...)% DescriptionCLIMANOMALY(x,y,ref) plots a y vs. x (main line) and y vs. ref (referenceline) and shades areas line values above zero; blue fills the areabetween zero and any values below zero.- To shade anomalies relative to a variable reference (e.g. aclimatology) specify ref as a vector the length of y.- To shade anomalies relative to a constant baseline, specify a singleref value.- To shade anomalies relative to an upper and a lower threshold, specifytwo ref values (e.g., let ref be [-0.4 0.5] to shade all values lessthan 0.4 or greater than 0.5).CLIMANOMALY(...,'top',ColorSpec) specifies the top color shading, whichcan be described by RGB values or any of the Matlab short-hand colornames (e.g., 'r' or 'red').CLIMANOMALY(...,'bottom',ColorSpec) specifies the bottom shading color.CLIMANOMALY(...,'mainline','LineSpec')CLIMANOMALY(...,'refline','LineSpec')Specifies line types, plot symbols and colors of the reference line.LineSpec is a string of characters, e.g. 'b--*'. Refer to the 'plot'documentation for more options. Use 'none' to plot the anomalies withoutBy default, the main line will be plotted as a solid black line ('k-')and the reference line as a dotted black line ('k:').[hlin,href,htop,hbot] = CLIMANOMALY(...) returns the graphics handles ofthe main line, top, and bottom plots, respectively.% ExamplesExample 1: Simple plot%Example 2: Change line and patch appearancex = 1:.1:20;y = sin(x);ref = sin(x)/2;figure[hlin,href,htop,hbot] = CLIMANOMALY(x,y,ref,'top','k','bottom',[.9 .9 .9],...'mainline','b-','refline','r--');hlin.LineWidth = 2;href.LineWidth = 2;alpha(htop,0.7)alpha(hbot,0.7)% Author InfoJake Weis, University of Tasmania, Institute for Marine and AntarcticStudies (IMAS), April 2021This function is based on the 'anomaly' function, written by Chad A.Greene (<a href="matlab:web('https://github.com/chadagreene/CDT')">Climate Data Toolbox</a>).Subfunction used: 'intersections' by Douglas M. Schwarz.See also: plot, boundedline, area, patch, and fill.%% Error checks:narginchk(3,inf)assert(numel(ref)<=2 | numel(ref)==numel(y),'Input error: The refold must either be one or two scalars or the length of y.')assert(numel(x)==numel(y),'Input error: The dimensions of x and y must agree.')assert(isvector(x),'Input error: x and y must be vectors of the same dimension.')assert(issorted(x),'Input error: x must be monotonically increasing.')%% Set defaults:% These are RGB values from cmocean's balance colormap (Thyng et al., 2016):topcolor = [0.7848 0.4453 0.3341];bottomcolor = [0.3267 0.5982 0.7311];% Reference line will be plotted by defaultmainspec = 'k-';refspec = 'k:';%% Input parsing:if nargin>3% Top face color:itop = find(strncmpi(varargin,'topcolor',3),1);if ~isempty(itop)topcolor = varargin{itop+1};varargin(itop:itop+1) = [];end% Bottom face color:ibot = find(strncmpi(varargin,'bottomcolor',3),1);if ~isempty(ibot)bottomcolor = varargin{ibot+1};varargin(ibot:ibot+1) = [];end% Main and reference line properties:imai = find(strncmpi(varargin,'mainline',3),1);iref = find(strncmpi(varargin,'refline',3),1);if ~isempty(imai)mainspec = varargin{imai+1};varargin(imai:imai+1) = [];end% Reference line:iref = find(strncmpi(varargin,'refline',3),1);if ~isempty(iref)refspec = varargin{iref+1};varargin(iref:iref+1) = [];endend%% Data manipulation:% Convert ref into a top and a bottom column vector the length of yif numel(ref) == 1reft = repmat(ref,numel(y),1);refb = repmat(ref,numel(y),1);elseif numel(ref) == 2reft = repmat(max(ref),numel(y),1);refb = repmat(min(ref),numel(y),1);elsereft = ref(:);refb = ref(:);end% Columnate inputs to ensure consistent behavior:x = x(:);y = double(y(:));% Archive the x and y values before tinkering with them (we'll plot the archived vals later).x_archive = x;y_archive = y;reft_archive = reft;refb_archive = refb;% If y contains nans, ignore them so filling will work:ind = (isfinite(y) & isfinite(reft) & isfinite(refb));x = x(ind);y = y(ind);reft = reft(ind);refb = refb(ind);% Find zero crossings so shading will meet the refline properly:First for the bottom:[xct,yct] = intersections(x,y,x,reft); % intersections is a subfunction by Douglas Schwarz, included below.Now for the top:[xcb,ycb] = intersections(x,y,x,refb); % intersections is a subfunction by Douglas Schwarz, included below.% Add zero crossings to the input dataset and sort them into the proper order:xb = [x;xcb];xt = [x;xct];yb = [y;ycb];yt = [y;yct];reft = [reft;yct];refb = [refb;ycb];[xb,ind] = sortrows(xb);yb = yb(ind); % sorts yb with xbrefb = refb(ind); % sorts refb with xb[xt,ind] = sortrows(xt);yt = yt(ind); % sorts yt with xtreft = reft(ind); % sorts reft with xt% Start thinking about this as two separate datasets which share refline values where they meet:refb) = refb(yb>refb);yt(yt<reft) = reft(yt<reft);%% Plot top and bottom y datasets using the area function:% Get initial hold state:hld = ishold;% Plot the top half:htop = fill([xt;flipud(xt)],[yt;flipud(reft)],topcolor,'LineStyle','none');hold onPlot the bottom half:hbot = fill([xb;flipud(xb)],[yb;flipud(refb)],bottomcolor,'LineStyle','none');if ~strcmp(mainspec,'none')% Plot the main line (the "archive" values are just the unmanipulated values the user entered)hlin = plot(x_archive,y_archive,mainspec);elsehlin = cell(1,1);endif ~strcmp(refspec,'none')% Plot the main line (the "archive" values are just the unmanipulated values the user entered)href(1) = plot(x_archive,reft_archive,refspec);if numel(ref) == 2% Plot the main line (the "archive" values are just the unmanipulated values the user entered)href(2) = plot(x_archive,refb_archive,refspec);endelseif numel(ref) ~= 2href = cell(1,1);elsehref = cell(2,1);endend% Return the hold state if necessary:if ~hldhold offend%% Clean up:if nargout==0clear hlin href htop hbotendend%% * * * * * * S U B F U N C T I O N S * * * * * * *function [x0,y0,iout,jout] = intersections(x1,y1,x2,y2,robust)INTERSECTIONS Intersections of curves.Computes the (x,y) locations where two curves intersect. The curvescan be broken with NaNs or have vertical segments.Example:[X0,Y0] = intersections(X1,Y1,X2,Y2,ROBUST);where X1 and Y1 are equal-length vectors of at least two points andrepresent curve 1. Similarly, X2 and Y2 represent curve 2.X0 and Y0 are column vectors containing the points at which the twocurves intersect.ROBUST (optional) set to 1 or true means to use a slight variation of thealgorithm that might return duplicates of some intersection points, andthen remove those duplicates. The default is true, but since thealgorithm is slightly slower you can set it to false if you know thatyour curves don't intersect at any segment boundaries. Also, the robustversion properly handles parallel and overlapping segments.The algorithm can return two additional vectors that indicate whichsegment pairs contain intersections and where they are:[X0,Y0,I,J] = intersections(X1,Y1,X2,Y2,ROBUST);For each element of the vector I, I(k) = (segment number of (X1,Y1)) +(how far along this segment the intersection is). For example, if I(k) =45.25 then the intersection lies a quarter of the way between the linesegment connecting (X1(45),Y1(45)) and (X1(46),Y1(46)). Similarly forthe vector J and the segments in (X2,Y2).You can also get intersections of a curve with itself. Simply pass inonly one curve, i.e.,[X0,Y0] = intersections(X1,Y1,ROBUST);where, as before, ROBUST is optional.% Version: 1.12, 27 January 2010Author: Douglas M. SchwarzEmail: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*eduReal_email = regexprep(Email,{'=','*'},{'@','.'})% Theory of operation:Given two line segments, L1 and L2,L1 endpoints: (x1(1),y1(1)) and (x1(2),y1(2))L2 endpoints: (x2(1),y2(1)) and (x2(2),y2(2))we can write four equations with four unknowns and then solve them. Thefour unknowns are t1, t2, x0 and y0, where (x0,y0) is the intersection ofL1 and L2, t1 is the distance from the starting point of L1 to theintersection relative to the length of L1 and t2 is the distance from thestarting point of L2 to the intersection relative to the length of L2.So, the four equations are(x1(2) - x1(1))*t1 = x0 - x1(1)(x2(2) - x2(1))*t2 = x0 - x2(1)(y1(2) - y1(1))*t1 = y0 - y1(1)(y2(2) - y2(1))*t2 = y0 - y2(1)Rearranging and writing in matrix form,[x1(2)-x1(1) 0 -1 0; [t1; [-x1(1);0 x2(2)-x2(1) -1 0; * t2; = -x2(1);y1(2)-y1(1) 0 0 -1; x0; -y1(1);0 y2(2)-y2(1) 0 -1] y0] -y2(1)]Let's call that A*T = B. We can solve for T with T = A\B.Once we have our solution we just have to look at t1 and t2 to determinewhether L1 and L2 intersect. If 0 <= t1 < 1 and 0 <= t2 < 1 then the twoline segments cross and we can include (x0,y0) in the output.In principle, we have to perform this computation on every pair of linesegments in the input data. This can be quite a large number of pairs sowe will reduce it by doing a simple preliminary check to eliminate linesegment pairs that could not possibly cross. The check is to look at thesmallest enclosing rectangles (with sides parallel to the axes) for eachline segment pair and see if they overlap. If they do then we have tocompute t1 and t2 (via the A\B computation) to see if the line segmentscross, but if they don't then the line segments cannot cross. In atypical application, this technique will eliminate most of the potentialline segment pairs.% Input checks.narginchk(2,5)% Adjustments when fewer than five arguments are supplied.switch nargincase 2robust = true;x2 = x1;y2 = y1;self_intersect = true;case 3robust = x2;x2 = x1;y2 = y1;self_intersect = true;case 4robust = true;self_intersect = false;case 5self_intersect = false;end% x1 and y1 must be vectors with same number of points (at least 2).if sum(size(x1) > 1) ~= 1 || sum(size(y1) > 1) ~= 1 || ...length(x1) ~= length(y1)error('X1 and Y1 must be equal-length vectors of at least 2 points.')endx2 and y2 must be vectors with same number of points (at least 2).if sum(size(x2) > 1) ~= 1 || sum(size(y2) > 1) ~= 1 || ...length(x2) ~= length(y2)error('X2 and Y2 must be equal-length vectors of at least 2 points.')end% Force all inputs to be column vectors.x1 = x1(:);y1 = y1(:);x2 = x2(:);y2 = y2(:);% Compute number of line segments in each curve and some differences we'llneed later.n1 = length(x1) - 1;n2 = length(x2) - 1;xy1 = [x1 y1];xy2 = [x2 y2];dxy1 = diff(xy1);dxy2 = diff(xy2);% Determine the combinations of i and j where the rectangle enclosing thei'th line segment of curve 1 overlaps with the rectangle enclosing thej'th line segment of curve 2.[i,j] = find(repmat(min(x1(1:end-1),x1(2:end)),1,n2) <= ...repmat(max(x2(1:end-1),x2(2:end)).',n1,1) & ...repmat(max(x1(1:end-1),x1(2:end)),1,n2) >= ...repmat(min(x2(1:end-1),x2(2:end)).',n1,1) & ...repmat(min(y1(1:end-1),y1(2:end)),1,n2) <= ...repmat(max(y2(1:end-1),y2(2:end)).',n1,1) & ...repmat(max(y1(1:end-1),y1(2:end)),1,n2) >= ...repmat(min(y2(1:end-1),y2(2:end)).',n1,1));% Force i and j to be column vectors, even when their length is zero, i.e.,we want them to be 0-by-1 instead of 0-by-0.i = reshape(i,[],1);j = reshape(j,[],1);% Find segments pairs which have at least one vertex = NaN and remove them.This line is a fast way of finding such segment pairs. We takeadvantage of the fact that NaNs propagate through calculations, inparticular subtraction (in the calculation of dxy1 and dxy2, which weneed anyway) and addition.At the same time we can remove redundant combinations of i and j in thecase of finding intersections of a line with itself.if self_intersectremove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)) | j <= i + 1;elseremove = isnan(sum(dxy1(i,:) + dxy2(j,:),2));endi(remove) = [];j(remove) = [];% Initialize matrices. We'll put the T's and B's in matrices and use themone column at a time. AA is a 3-D extension of A where we'll use oneplane at a time.n = length(i);T = zeros(4,n);AA = zeros(4,4,n);AA([1 2],3,:) = -1;AA([3 4],4,:) = -1;AA([1 3],1,:) = dxy1(i,:).';AA([2 4],2,:) = dxy2(j,:).';B = -[x1(i) x2(j) y1(i) y2(j)].';% Loop through possibilities. Trap singularity warning and then uselastwarn to see if that plane of AA is near singular. Process any suchsegment pairs to determine if they are colinear (overlap) or merelyparallel. That test consists of checking to see if one of the endpointsof the curve 2 segment lies on the curve 1 segment. This is done bychecking the cross product(x1(2),y1(2)) - (x1(1),y1(1)) x (x2(2),y2(2)) - (x1(1),y1(1)).If this is close to zero then the segments overlap.% If the robust option is false then we assume no two segment pairs areparallel and just go ahead and do the computation. If A is ever singulara warning will appear. This is faster and obviously you should use itonly when you know you will never have overlapping or parallel segmentpairs.if robustoverlap = false(n,1);warning_state = warning('off','MATLAB:singularMatrix');% Use try-catch to guarantee original warning state is restored.trylastwarn('')for k = 1:nT(:,k) = AA(:,:,k)\B(:,k);[~,last_warn] = lastwarn;lastwarn('')if strcmp(last_warn,'MATLAB:singularMatrix')% Force in_range(k) to be false.T(1,k) = NaN;% Determine if these segments overlap or are just parallel.overlap(k) = rcond([dxy1(i(k),:);xy2(j(k),:) - xy1(i(k),:)]) < eps;endendwarning(warning_state)catch errwarning(warning_state)rethrow(err)end% Find where t1 and t2 are between 0 and 1 and return the corresponding% x0 and y0 values.in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) <= 1 & T(2,:) <= 1).';% For overlapping segment pairs the algorithm will return an% intersection point that is at the center of the overlapping region.if any(overlap)ia = i(overlap);ja = j(overlap);% set x0 and y0 to middle of overlapping region.T(3,overlap) = (max(min(x1(ia),x1(ia+1)),min(x2(ja),x2(ja+1))) + ...min(max(x1(ia),x1(ia+1)),max(x2(ja),x2(ja+1)))).'/2;T(4,overlap) = (max(min(y1(ia),y1(ia+1)),min(y2(ja),y2(ja+1))) + ...min(max(y1(ia),y1(ia+1)),max(y2(ja),y2(ja+1)))).'/2;selected = in_range | overlap;elseselected = in_range;endxy0 = T(3:4,selected).';% Remove duplicate intersection points.[xy0,index] = unique(xy0,'rows');x0 = xy0(:,1);y0 = xy0(:,2);% Compute how far along each line segment the intersections are.if nargout > 2sel_index = find(selected);sel = sel_index(index);iout = i(sel) + T(1,sel).';jout = j(sel) + T(2,sel).';endelse % non-robust optionfor k = 1:n[L,U] = lu(AA(:,:,k));T(:,k) = U\(L\B(:,k));end% Find where t1 and t2 are between 0 and 1 and return the corresponding% x0 and y0 values.in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) < 1 & T(2,:) < 1).';x0 = T(3,in_range).';y0 = T(4,in_range).';% Compute how far along each line segment the intersections are.if nargout > 2iout = i(in_range) + T(1,in_range).';jout = j(in_range) + T(2,in_range).';endendend
⛳️ 运行结果
