本文由阿里技术专家陈戊超(仲卓)分享。深度学习技术在当代社会发挥的作用越来越大。目前深度学习被广泛应用于个性化推荐、商品搜索、人脸识别、机器翻译、自动驾驶等多个领域,此外还在向社会各个领域迅速渗透。
当前,深度学习的应用越来越多样化,随之涌现出诸多优秀的计算框架。其中 TensorFlow,PyTorch,MXNeT 作为广泛使用的框架更是备受瞩目。在将深度学习应用于实际业务的过程中,往往需要结合数据处理相关的计算框架如:模型训练之前需要对训练数据进行加工生成训练样本,模型预测过程中需要对处理数据的一些指标进行监控等。在这样的情况下,数据处理和模型训练分别需要使用不同的计算引擎,增加了用户使用的难度。
本文将分享如何使用一套引擎搞定机器学习全流程的解决方案。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
相关文章
暂无评论...