Loading...

厦大最新《强化学习推荐系统》综述论文推荐系统如何使用强化学习一直是个难题。最近,来自厦门大学的研究人员发布了《基于强化学习的推荐系统》综述论文,详细阐述了强化学习推荐系统的问题、方法、挑战等。 摘要 推荐系统已经被广泛应用于不同的现实生活场景,帮助我们找到有用的信息。近年来,基于强化学习(RL)的推荐系统已经成为一个新兴的研究课题。由于其交互性和自主学习能力,它常常

智源社区1年前 (2023)发布 智源社区
379 0 0

推荐系统如何使用强化学习一直是个难题。最近,来自厦门大学的研究人员发布了《基于强化学习的推荐系统》综述论文,详细阐述了强化学习推荐系统的问题、方法、挑战等。

厦大最新《强化学习推荐系统》综述论文推荐系统如何使用强化学习一直是个难题。最近,来自厦门大学的研究人员发布了《基于强化学习的推荐系统》综述论文,详细阐述了强化学习推荐系统的问题、方法、挑战等。      摘要   推荐系统已经被广泛应用于不同的现实生活场景,帮助我们找到有用的信息。近年来,基于强化学习(RL)的推荐系统已经成为一个新兴的研究课题。由于其交互性和自主学习能力,它常常

摘要

推荐系统已经被广泛应用于不同的现实生活场景,帮助我们找到有用的信息。近年来,基于强化学习(RL)的推荐系统已经成为一个新兴的研究课题。由于其交互性和自主学习能力,它常常超过传统的推荐模型,甚至是最基于深度学习的方法。然而,在推荐系统中应用RL还面临着各种挑战。为此,我们首先对五种典型推荐场景的RL方法进行了全面的概述、比较和总结,以下是三个主要的RL类别: 价值函数、策略搜索和演员-评论员(Actor-Critic)。然后,在现有文献的基础上,系统分析了面临的挑战和相应的解决方案。最后,通过对RL研究中存在的问题和局限性的讨论,指出了该领域潜在的研究方向。

论文地址:

https://arxiv.org/abs/2109.10665

https://github.com/hongleizhang/RSPapers

© 版权声明

相关文章

暂无评论

暂无评论...